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A semi-empirical model which employs polynomials based on general free radical polymerization 
kinetics, is developed to describe the molecular weight distribution data as well as to evaluate the 
average molecular weights of a variety of commercial thermoplastics including polystyrene, poly(methyl 
methacrylate) and low density polyethylene. These novel expressions are equally applicable to a natural 
rubber sample with a bimodal distribution. Least-squares methods for the classical $chulz and Flory 
distribution functions are introduced to handle the g.p.c, data of the above polymers. Comparison of the 
results collected from various analyses indicates clearly that the polynomial model is the most versatile 
one in the sense that it can be utilized to smooth out satisfactorily the molecular weight distribution data 
of many polymers. In general, the Wesslau distribution function is particularly good for the highly 
branched polyolefin and the Schulz model is fairly effective for the addition polymers of moderately 
sharp molecular weight distribution, presumably with Mw/Mn=3.0. However, the Flory and Tung 
distributions are found to be rather inferior in the present studies. On the basis of the current findings, a 
new procedure is suggested to facilitate the computations of the true average molecular weights from 
g.p.c, data directly. 

(Keywords: molecular weight distribution; polynomial function; least-squares analysis; molecular 
weight averages; gel permeation chromatography) 

I N T R O D U C T I O N  

Since the inception of gel permeation chromatography 
(g.p.c.) in the early 60's 1-3, it has been routinely used to 
determine the molecular weight distribution of high 
polymers in many laboratories. This method has been 
recently improved by the coupling of a low-angle laser 
light scattering photometer 4'5. In spite of the rapid 
development of this particular experimental technique, 
the amount of work reported on the mathematical 
description of the molecular weight distribution data 
from g.p.c., which is of theoretical and practical impor- 
tance, is rather scarce. Nevertheless, several classical 
models have been commonly applied to deal with the data 
obtained from the conventional fractionation 
experiments 6~'7. The Flory s and Schulz 9 models can be 
derived theoretically but the Wesslau 1°'11 and Tung 12 
distribution functions were devised empirically to suit 
some specific systems. These models are defined by one or 
two parameters and often describe less adequately the 
observed molecular weight distribution of most polymers. 
Thus analytical expressions that contain more than two 
parameters are postulated to cope with these involved 
situations. 

It has been reported that a polymer may be considered 
as a blend of several components with known distri- 
butions 13"14. As such its molecular weight distribution 
can be specified by a linear function of the simple models 
that fit the individual components. This analysis hinges on 
the accuracy in differentiating the cumulative distribution 
curves. A second established multiparameter distribution 
function rests on a series that involves either Laguerre 
polynomials15-1 ~ or Hermite polynomials ~ 8. The coef- 

ficients of these polynomials are evaluated from the 
moments of distributions which in many cases are difficult 
to estimate accurately, particularly the higher moments. 
In this paper, we derive a semi-empirical polynomial 
model which can readily be applied to analyse distri- 
bution data directly by means of a non-linear regression 
procedure. The effectiveness of these novel functions is 
tested using g.p.c, data which are also interpreted by 
various simple models. 

Molecular weight distribution of fi'ee radical 
polymerization 

The free radical polymerization of a monomer would 
produce an addition polymer of final molecular weight 
distribution depending predominantly on the rates of the 
individual kinetic steps involved as well as the duration of 
reaction. It may be described by a general kinetic scheme 
which includes four distinct elementary processes, viz. 
initiation, propagation, termination (combination and 
disproportionation) and chain transfer (to a monomer 
and/or a chain transfer agent) with their respective rate 
constants designated as k~, kp, kt (combination), k~ (dis- 
proportionation), ktr (transfer to monomer) and k;r (trans- 
fer to chain transfer agent). If the instantaneous con- 
centrations of the two essential reactants; monomer and 
chain transfer agent are denoted by [M] and [S] re- 
spectively at time t, then the rate of formation of X-mer 6h 
expressed by the first derivative of the concentration of X- 
mer [Px] with respect to time t, is given by, 

d[Px] 
-- (fbO~k +~bZO2ktX/2)exp(- OX) (1) 

dt 
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where the variables ~b, 0 and ~ are independent of the 
number of monomer units incorporated into the inactive 
chain Px, and are defined respectively by, 

where 

E = H 1 - OoG (7a) 

4) = [I'/(k, +kl)] '/z (la) Ll= (I+ 1)Hi+ 1 -OoHt; 1= 1,2 . . . . .  n -  1 (7b) 

0 = ktr[M] + k;~[S] + [I'(k t + k;)] 1/2 
kp[M] (lb) 

~b = ktr[M ] + k;,[S] + k;~b (lc) 

Hereafter, we use the symbols I' and X to stand for the 
rate of initiation and the number of repeating units in the 
X-mer respectively. Two main assumptions are made in 
formulating equation (1), these are the steady-state 
approximation applied to the radicals and the indepen- 
dence of the rate constants of the size of the reactive 
species. 

By using the Taylor series expansion, we can express the 
variable 0 in the following form 

0 = 0 o + ~ Oi ti (2) 
i = 1  

Then 
equal to a polynomial, 

where 

Ln = - OoH. (7c) 

the differential distribution function W(X) is 

W(X)= (I~_ IRIXI)exp(- OoX) 

 ,-- /fXN'fX,dX 
0 

oo 

Rt=Ll / f  XN'(X)dX;/=2,3 . . . . .  n 

0 

(8) 

(8a) 

(8b) 

where the first term on the right hand side is independent 
of t and the constant 01 is related to the i 'h derivative of 0 
evaluated at t=0 .  Equation (1)now becomes, 

(-4) dt = ((o00 + (a202ktX/2)exp(- 0oX)ex p 01t i 
,= 

(3) 

By expanding the exponential function exp(-  X E O~t ~) in 
i = l  

series, we obtain from the foregoing equation, 

d[~tx] = (~b00 + Ft(t)Xt)exp(- OoX ) 
l = l  

(4) 

To convert equation (8) into a useful form, we proceed to 
derive the integral distribution function, 

X 

I(X) = f W(X)dX 
0 

= K -  (K  + l=li AtXI)exp(-Oo x ) 

where 
n 

(9) 

(10) 

(10a) 

where the coefficients Fts' are functions of t and are 
intimately related to the variables q~, 0, ~k and constants kt 
and Ois'. Integration of equation (4) results in, 

where 

[Px] = (G(t) + ~ Hl(t)Xl)exp( - OoX ) (5) 
1 = 1  

t 

f 4 Oq, dt 
0 

t 

Hl(t ) = f F, tt)dt 
0 

(5a) 

(5b) 

1 ~ s!R~ 

Normalization of function W(X) leads to, 

/(y) = 1 - ( 1  +y+t~2N,y')exp(-y) 

where y = OoX 

Nt=j~=,(AJ-(J + I)Aj+ t'~J' 

A I + . = 0  

Consequently, equation (8) becomes, 

(lOb) 

(11) 

(lla) 

(11 b) 

(llc) 

It follows that the number distribution functions N'(X) 
may be written as, 

a[P ] N'(X) = - -  (6) 
~X 

(E+~=L ) p( = tX t ex -OoX) (7) 

~I(X) (12) W(X)= ax 

= { Oot~= l[ Nl -- (l + l )Nl + l]yt}exp(- Y) 
(13) 

with N 1 = 1 and Nt +. =0. Eventually, the a th moment of 

582 POLYMER, 1985, Vol 26, April 



MWD models for g.p.c, characterized polymers. K. K. Chee 

the distribution W(X) is equal to, 

U, = f X"W(X)dX 

0 

(14) 

= 0o" ~ [N,  - (1 + 1)N l + 1 ] F(1 + a + l) (15) 
/ = 1  

where F(1 +a+l) is a gamma function of the variable 
(1 + a  + l). Equations (11), (13) and (15) are used to analyse 
the molecular weight distribution data. 

In practice, it is desirable to recast equation (11) to 

different graphical methods for determining the constants 
c~ and b. Here, we resort to a least-squares treatment for 
solving these two parameters. 

A difference formula is first defined as, 

D = ~.[ I(M) -f(c~,b).g(~,b)] 2 (20) 
M 

of which a minimum value would offer the best-estimates 
ofc~ and b designated respectively as c( and b'. This implies 
that 

=o (: ,)  
\ ( ~ / , .  

{[1 -I(y)]exp(y)- 1 -y}  = ~ N,y' (16) 
/ = 2  

, [ ? D \  
G =~?b)b =0 (22) 

where the degree of the polynomial n should depend on 
circumstances. The value of the expression on the left 
hand side can be computed for each chain length X or 
experimental datum l(y) provided that the constant 00 
has been preset at a particular value. In the present 
analysis, the least-squares method is employed to de- 
termine the polynomial coefficients N~s'. Together, we 
also compute the standard error of estimate of I(y) on y 
defined by, 

where N" is the total number of data points y or X. This 
computation cycle is repeated many times by varying the 
input value of 00 until a minimum SE is achieved. 

Least-squares analyses for Schulz and other distribution 
models 

The Schulz distribution function is one of the classical 
molecular weight distribution functions and is widely 
used particularly for vinyl polymerization terminated by 
coupling. This differential distribution function W(M) 
consists of two adjustable parameters a and b and is given 
a s  

(_  ln~)b + 2 
W(M)= Mb+lc~ M (18) 

F(b + 2) 

It describes the integral weight fraction of molecular 
weight M by an expression, 

where 

I(M) =f (~,b).g(o~,b) (19) 

( - In cO b + 2 
f(c~,b) = (19a) 

F(b + 2) 

M 

g(c~,b) = f M b + 1 ctMdM 
0 

(19b) 

where 

F'=  ~.{ [ I (M)- f (c ( ,b ' ) .  g(ct',b')][f~.g(~',b') 

+f(cd,b').g,,]} (21a) 

G'= ~{ [I(M)-f(~',b').g(z(,b')][fyg(~',b') 
M 

+f(~',b').gv]} (22a) 

The various derivatives are, 

(~f~ = /b '+2 \ . .  'b" 
L '  = \ c = / . ~ ~,~ff ~, ) J [ = ' J (23) 

=(gf~ [ l n ( - l n ~ ' ) - / ~ ( b ' +  1)]f(~t',b') fb' \~b/b, (24) 

M 

0 

Mb'+2.~'MdM (25) 

,VI 

gv = f (In M). M b'+ L c(MdM 

0 

(26) 

where g(X) is a digamma function of X 21. The in- 
tegrations in equation (25) and (26) are carried out 
numerically in this work. Equations (21) and (22) can be 
rearranged to obtain (respectively) 

1 

( vF(b' + 2)~'J(M)[f~g(a',b') +f(c(,b')g<]-]h,+2) 
. . . . . . . . .  / 

t_ ~g(~,b)[f~,g(~,b,)+f(o(,b,).g~] ~ J 
M (27) 

b,_ 

F(b' + 2)~I(M)[fb,g(~',b') +.f(~',b')gb,] 
1 [- ~/ 7 
....... In/  ~ - ,  . . . . .  - . . . . . . . . . . .  J l n ( -  ln~') [_ ~,g(~ ,b')[fhg(c(,b') +f(:(,b')g,,] 

M 

(28) 

The integral function g(c<,b) may be conveniently eva- 
luated by a numerical method if the values of c~ and b 
are known. Boyer ~9 and Mussa 2° have introduced two 

An iterative method is applied to equations (27) and (28) 
to generate a series of approximate values of ~' and b'. For 
each pair of these values, we also calculate the cot- 
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responding function values of F' (equation (21a)), G' 
(equation (22a)) and S', where 

S ' -=  F '2 -t- G '2 (29) 

Practically, we select the best values ofe'  and b' as the pair 
that yields the smallest S' value. It will be illustrated that 
this is in fact an accurate and simple approach to evaluate 
the best-fit Schulz distribution curve. The standard error 
of estimate of I(M) on M is equal to, 

SE = [ D / N " -  2)] 1/2 (30) 

where D is computed by equation (20) based on the final- 
selected values of c( and b', which also produce the a th 
moment of W(M), 

while the standard error ofestimate of I(X) on X may also 
be computed by equation (30), but here D refers to 
equation (34). 

Tung 6a has discussed data treatment using the Wesslau 
and Tung distribution models. The Wesslau distribution 
function contains two parameters M o and r ;  the latter 
increases with the increase of the breadth of distribution. 
This unique feature is implicitly exhibited by the following 
equations: 

I I ( I 2 M \  
W(M) = ~ e x p [ -  ~ l n  7=-.] (38) 

fl,,/rc \ # Me/  

/(M)=½[1 + erf (~lnM~)]  (39) 

( 1 , '~aF(a+b'+2) 
V . = \ ~ )  F - ~ b ; )  (31) 

The Fiery 8 distribution function was first derived for 
the linear condensation polymers. In this case the differen- 
tial distribution function for the X-mer is, 

W(X) = X(InP)ZP x (32) 

where P is a probability constant. By analogy, we have the 
integral distribution function of the X-mer, 

I (X)= 1 + X p X l n P - p x  (33) 

and a deviation function defined as, 

O = ~ ( I ( X )  - 1 - XpxlnP + px)2 (34) 
X 

In the least-squares sense, the best value of P denoted by 
P' should satisfy the relationship, 

An effective algorithm to a root of the foregoing equation 
is the Newton iteration method which obtains the suc- 
cessive approximations by, 

U, = M"oexp(aZ fl2/4) (40) 

where eft(X) is an error function of X 22. 
The Wesslau parameters fl and M 0 are evaluated by 

finding the inverse transform of the error function using 
equation (39) and a relevant mathematical table 22, i.e. 

eft_ l ( l t n  M__M_'] = 1 1 
\fl M e )  ~ l n M - ~ l n M o  (41) 

Hence a plot of eft-l(1/fl In M/Me) against In M should 
produce a straight line whose gradient and intercept result 
in fl and M o respectively. Analogously, we get, 

x ~ / 1  M \-I 2 SE={~[I(MI-I-~e~ln~oo)J~'/~ 
N " - 2  J 

(42) 

As far as the data analysis is concerned, the most 
advantageous model is perhaps the one postulated by 
Tung who has studied the molecular weight distribution 
of polyethylene using the equations listed below: 

W(M) = Y Z M  z -  lexp(-  Y M  z) (43) 

I(M) = 1 - exp(-  Y M  z) (44) 

, , h(P'q_,) 
Pq = Pq- 1 h'(P'4-1 ) (36) 

where the subscript q is for the qth repetition and the 
functions, 

U. = Y-"/ZF(1 +a/Z)  (45) 

where Y and Z are two adjustable parameters. Equation 
(44) can be readily rearranged to, 

lnln[ 1 - I(M)] - 1 = In Y + ZlnM (46) 

h ( P ) = ~ [ I ( X ) - I - X p x l n P + p X ] x Z P  x (36a) 
X 

Once the parameters Y and Z are determined from the 
above linear plot, we can compute the 

h'(P) = c~h(P) = ~ ( I ( X ) -  1 - X P  x lnP + pX)x3px- '  
OP x 

-- Z X 4 p 2  x - l l n P  (36b) 
X 

T h e  a th moment of the distribution is, 

U. = r(2 + a)/(l - p,)a (37) 

(47) 

m 

This statistical parameter SE is consistently 47 employed 
to indicate the goodness of fit of a particular integral 
distribution function to the observed cumulative weight 
fractions. Least-squares methods are applied to equations 
(41) and (46). 
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Figure 1 Plots of molecular weight distribution with wx  10 
against InM for sample $1. The data points are obtained from 
experiments and the curves are predicted theoretically: Curve A; 
polynomial model, curve B; Schulz model, curve C; Wesslau 
model, curve D; FIory model, and curve E; Tung model 

1.2 
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_~ 04 

Figure 2 

, ,b 1 
• I o _ 

8 I0 12 14 
In M 

(a) Plot of molecular weight distribution with wx  10 
against InM for sample S2. (b) Integral distribution curve with 
I(M) against InM for sample $2. The data points are obtained 
from experiment and the curves are predicted by the polynomial 
model 

Mathematical calculations were performed on a Un- 
ivac 1100/11 computer system. 

RESULTS AND DISCUSSION 

The raw data are displayed in Figures 1-5; (plotting 
weight fraction, w, against logarithm of molecular weight 
M). Though the observed data points of the samples 
are not connected for the sake of simplicity, they all do 
obviously exhibit distinct unimodal distributions except 
sample N1 which is particularly chosen to represent the 
bimodal distribution. Moreover, sample N2 is con- 
spicuously skewed to the high molecular weight region. In 
the ensuing analyses, various distribution functions will 
be applied to match these experimental data. 

2 . 0  - 

~n 
1.0 

0.5 

Figure 3 

• MI 

o M2 

8 IO 12 14 

InM 
Plots of molecular weight distribution with wx  10 

against InM for samples M1 and M2. The points are obtained 
from experiments and the curves are predicted by the polynomial 
model 

EXPERIMENTAL 

Six commercial thermoplastic samples and two biopoly- 
mer samples were studied altogether. These samples 
were designated as S1 and $2 for polystyrene, M1 and M2 
for poly(methyl methacrylate), E1 and E2 for low density 
polyethylene, and NI and N2 for natural rubber. Rudin et 
al. 23 have reported the molecular weight distribution data 
of the same pair of poly(methyl methacrylate) samples 
(originally coded as samples A and C) recently. The g.p.c. 
data of the natural rubber samples (previously quoted as 
samples RRIM 703 and PB5/51) from different clones 
were acquired from the work of Subramanian 24. 

Samples S1, $2, E1 and E2 were analysed by the 
Polymer Supply and Characterization Centre of 
RAPRA, England. The g.p.c, columns which were 
calibrated by the polystyrene standards, were eluted with 
tetrahydrofuran at 25°C for polystyrene samples and with 
a-dichlorobenzene plus 1% Ionox 330 as antioxidant at 
138 140°C for the low density polyethylene samples. 
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~) 1.0 -- A \  9....p.,...£~ 
B R 

"U. .: ':. 
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6 8 tO 12 14 
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Figure 4 Plots of molecular weight distribution with wx  10 
against InM for samples E1 and E2. The data points are obtained 
from experiments and the curves A and B are predicted by the 
polynomial and Wesslau models respectively 
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It can be demonstrated that the constant 0o= 1/X., 
where )(. is the hypothetical number-average degree of 
polymerization at t=0.  Hence the computation cycle 
using equations (16) and (17) is started with the first 
approximation of 00 taken as the reciprocal of )(. 
estimated by 

(48) 

where wi is the weight fraction of the ith species of 
molecular weight Mi and M0 is the molecular weight of a 

? k  NI 1.5 -- / ~  

L0 

~, 0.5 

08 I0 12 14 16 
I n M  

Figure 6 Plots of  molecular we igh t  distr ibution w i th  w× 10 
against InM for samples N1 and N2. The data points are obtained 
from experiments and the curves are predicted by the polynomial 
model 

repeating unit. The 0 o values is then successively de- 
creased or increased until a smallest SE is produced. In 
any case the degree of n may be effectively kept below 10. 
The results obtained for all the samples are shown in Table 
1. 

Equations (27) and (28) are executed to create new sets 
of ct' and b'. The first approximations of ~' and b' are 
computed by, 

2-A'  
b' = (49) 

1 - A '  

(b' + 2) 

where the polydispersity index, 

A'= M'w/M'. (49a) 

Here, the apparent number-average and weight-average 
molecular weight are given respectively as: 

I N'=~I 1-1 M', = w,/M, (49b) 
i 

N" 

mw = ~ wiml (49c) 
i=1 

Figure 6 illustrates the variations of functions F' (equation 
(21a)) and G' (equation (22a)) with the iteration sequence 
b7 for sample S1. Since the function F' is more responsive 
than the function G' to the parameter hT, the iterates that 
tend to vanish the former function are interpolated from 
the Figure. We have detected from the Figure that when h7 
increases from 12 to 13, the value of lnc( stays at 
- 6 . 8694  x 10-6, but the values of both parameters b' and 

Table 1 Parameters of various molecular weight distr ibut ion models 

Sample 

No. Model Parameter $1 $2 M1 M2 E1 E2 N1 N2 

1 Polynomial 00 x 103 0.6628 1.1920 8.9686 1.3075 1.9015 0.7366 0.2305 0.1378 
--N 2 0.4713 0.4756 0.7015 0.7675 1.0641 1.3485 2.8039 0.6931 
N 3 0.1269 0.8050 0.4138 0.9515 1.2188 1.7228 3.4578 0.1519 
--N 4 x 10 0.0243 3.6510 --0.0947 4.9332 5.5213 8.7428 16.71 7.8181 
N s x 10 -- 0.9160 --0.5237 1.2979 1.3809 2.3622 4.1806 2.0285 
N 6 x 102 -- 1.084 --1.7335 1.4648 1.668 3.071 4.976 2.225 
N 7 x 104 -- 6,0396 --21.104 6.4246 8.5159 16.244 24.19 9.6621 
N 8 x  105 -- -- 9.3217 . . . . .  
SEx 102 0.26 0.76 1.09 0.62 0.64 1.76 1.19 1.22 

2 Schulz - - Ina '  x 10 "6 6.8694 4.7609 60.067 7.3965 38.50 11.843 1.6168 0.5662 
--b' x 10 2.7902 7.3933 6.1037 7.3480 7.3422 9.2018 9.6616 7.8429 

S-'E x 102 1.62 1.67 3.76 2.13 3.24 3.35 9.65 1.88 

3 Flory - I n p '  x !04 8.5926 8.8773 101.53 13.432 19.338 7.4339 -- -- 

S-Ex 102 2.17 4.76 5.29 4.01 6.52 7.44 -- -- 

4 Wesslau /3 1.2151 1.6573 1.3369 1.6099 1.5004 1.8327 1.6996 1.6942 
M 0 x 10 -s 1.7494 1.4268 0.1567 0.7362 0.1954 0.6201 4.0772 8.4316 

S--Ex 102 2.72 5.05 2.70 6.89 3.51 1.60 8.16 11.1 

5 Tung Z 1.5637 1.0885 1.3610 1.1720 1.1449 -- -- 1.0214 
Y x 109 2.302 841.9 588.3 506.9 4731.0 -- -- 345.0 

S--E x 102 6.89 5.98 8.53 4.72 6.08 -- -- 2.22 
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Figure 6 Iterative method applying to solve the Schulz 
parameters for sample $1; curve A: F'×10 -2 against N and curve 
B: G'×10 against N 

S' drop from -0.27889 to -0.27907 and from 266.0 to 
46.6, respectively. Then appropriate combinations of ~' 
and b' values are chosen within the above specified ranges 
and substituted into equations (27), (28) and (29). The 
smallest S' = 0.0013 decides the values of 
Ins' = - 6.8694 × 10- 6 and b' = - 0.27902, which are con- 
sidered as the best solutions to equations (21) and (22). 
These results are shown in Table 1 together with those 
obtained by the same algorithm for other samples. It 
should be noted that the determining function S' is 
sensitive to at least the fourth decimal place of ln~' and b'. 
Besides, this iterative procedure is relatively simple in that 
it does not require a good first approximation. 

To compute the best value of the Flory parameter P', we 
use equation (36). The calculation exercise is initiated by 
the first approximation P ' =  0.9990, a value which makes 
the algorithms converge rapidly for all samples except N1 
and N2, that do not yield convergent values at all. Table 1 
includes the lnP' values and also results obtained from the 
Wesslau (equation (41)) and Tung (equation (46)) models. 
The Tung distribution function does not hold for samples 
E2 and N1 because the parameter Z <  125. 

Using the information provided in Table 1, 
equations (11), (19), (33), (39) and (44) would predict 
the cumulative weight fraction of any polymer species. 
The theoretical weight fraction w~ of an observed M~ 
is then readily computed by treating the function 
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2 I(X) or I(M) as a discrete variable, and 
hence we have wi=l(Xi) - I (Xi  O=l (Mi) - I (Mi  1), 
where X~ is the number of repeating units of the 
species Mi. Some of these results are compared with those 
measured in Figures 1-5. Figure 1 shows that the poly- 
nomial distribution function (equation (11)) is the most 

0 suitable one for sample S1 and this coincides with the fact 
that it does give the smallest SE value. In fact, these 
Figures are constructed to magnify the differences be- 
tween the theoretical and experimental weight fractions 
over the whole molecular weight range covered in each 
case. Figure 2(a) confirms that such a plot is more 
informative than the conventional integral distribution 

-2 curve (Figure 2(b)) which tends to compress the data 
points. Here the polynomial curve fits the observed data 
satisfactorily only when the molecular weight is neither 
too high nor too low, i.e. it holds over l l . 0 < l n M <  13.5. 
This explains the enormous deviations between the 
predictions and measurements of the low- and high-order 

-4  average molecular weights for sample $2 as will be 
touched on later. The Wesslau model is most compatible 
with sample E2 and so it is presented in Figure 4. Other 
curves in Figures 3-5 are produced according to the 
polynomial distribution equation which fits these systems 
best. 

In the present context, accordance between the es- 
-6 timates and measurements has to be accomplished with 

respect to the average molecular weights which are based 
on a continuous frequency function, viz. the differential 
distribution function defined by equation (12). In terms of 
molecular weight M, we have 

-8 W(M) -?'I(M) (12a) 
?M 

Ua= ~ M"W(M)dM (14a) 

0 

which correspond to equations (12) and (14) respectively. 
Equations (15), (31), (37), (40) and (45) are invoked to 
compute the various theoretical moments of distribution 
which in turn report the average molecular weights 26. To 
evaluate the average molecular weights from the experim- 
ental data, we estimate the derivative W(M) numerically. 
This is done by a least-squares fit of 3 adjacent data points 
to a parabola one at a time, i.e. 

I i (M)  = a  i + bi lnM + ci(lnM) (51) 

where the empirical constants a~, bi and ci are determined 
by the integral weight fractions l(Mi-l), l(Mi) and 
I(M~ +1). These data points are arranged in the ascending 
order, i,e. the molecular weights Mi_ 1 <Mi<Mi+l. It 
follows that, the experimental a th moment of distribution 

Mi 

N" i Ua= ~ M"W~(M)dM 
i=2 

Mi i 

(52) 

where W/(M) is the differential distribution function 
pertaining to the species Mi and it is equal to, 

2cilnM 
W~(M)= + M (53) 
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Figure 7 Differential distribution functional with W(M) x 106 
against InM for sample $1. The data points are derived from 
g.p.c, data and the curve is predicted by the polynomial model 
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As Figure 7 is very similar to Figure 1, it illustrates that the 
W(M) curve predicted by the polynomial model (equa- 
tion (13)) is compatible with the data points calculated by 
equation (53) for sample SI. Table 2 summarizes the values 
of the average molecular weights for all the samples. 
Obviously the polynomial model predictions are quite 
consistent with measurements for samples S1, M 1, El, M2 
and N2, except that there are some noticeable discrepan- 
cies in the Mn values for the last two samples, as is also 
shown in Figure 3 and 5. In these two Figures, the 
theoretical curves do not conform to the experimental 
data at the low molecular weight ends. Although for 
sample $2, considerable disagreement between some of 
the average molecular weight data from the polynomial 
model and experiment is encountered, as mentioned 
earlier, the values of Mv and )~tw from the two sources are 
indeed in agreement. 

The competency of this new model is also examined by 
a polyisoprene sample (N1) whose molecular weight 
distribution manifests two definite peaks at molecular 
weights around 1.5 x 10 5 and 2.3 x 1 0  6 (Figure5). Surpris- 

Table 2 Estimated average molecular weights based on continuous distribution 

Estimated 
Average Sample 
Molecular 

No. Weight Model $1 $2 M1 M2 E1 E2 N1 N2 

1 Mn a x 10 -5 Expt. 1.244 0.756 0,097 0.481 0.105 0.232 1.581 4.134 
Polynomial 1.163 0.840 0.082 0.589 0,104 0.254 1,416 5.257 
Wesslau 1.209 0.718 0.100 0.383 0.111 0.268 1.980 4.114 
Schulz 1.050 0.548 0.065 0.359 0.069 0.067 0.209 3.810 
Flory 1.211 1.172 0.099 0.745 0.145 0.377 - -- 
Tung 1.354 0.323 0.111 0.369 0.060 -- -- 0,450 

2 Mv b x 10 -5 Expt. 2.326 2,403 0.223 1.537 0.306 0.944 7.301 17.16 
Polynomial 2.308 2.318 0.222 1.544 0.308 0.847 6.967 17.00 
Wesslau 2.104 2.011 0,196 1.018 0.259 0.944 5.850 12.07 
Schulz 2.171 2.181 0.194 1.410 0,271 0.728 6.060 17.57 
Flory 2.140 2.071 0.175 1.317 0.256 0.666 -- -- 
Tung 2.676 2.987 0,299 1.846 0.354 -- -- 16.66 

3 Mw c x 10 -5 Expt. 2.804 3.172 0.291 1.993 0.412 1.551 11.44 20.98 
Polynomial 2.762 2.922 0.293 1.989 0.410 1.170 10.54 20.51 
Wesslau 2.530 2.835 0.245 1.407 0.343 1.436 8.394 17.28 
Schulz 2,605 3.744 0.231 1.711 0.329 0,912 0.394 21.47 
Flory 2.422 2.344 0.198 1.490 0.290 0.754 -- -- 
Tung 3.005 3.688 0.346 2.225 0.431 -- -- 21.04 

4 Mz d x 10 -5 Expt. 5.569 8.340 0.674 4.498 1.038 8.765 33.78 35.85 
Polynomial 5.216 5.906 0.701 4.447 0.982 2.996 27.12 34.07 
Wesslau 5.290 11.19 0.599 5.142 1.057 7.700 35.58 72.58 
Schulz 3.961 4.748 0.398 3.063 0.589 1.756 12.58 39.12 
Flory 3.633 3.516 0.297 2.235 0.435 1.130 -- -- 
Tung 4.288 6.807 0.538 3.856 0.761 -- -- 41.22 

5 Mz+ t x 10 "s Expt, 9.249 16.69 1.034 7.053 1.762 19,01 49.26 47.36 
Polynomial 8.178 8.562 1.116 6.866 1.510 4.447 35.35 44.67 
Wesslau 11.08 44.19 1.463 18.79 3,260 4.129 150.8 304.9 
Schulz 5.417 6.849 0.564 4.414 0,848 2.601 18.77 56.80 
Flory 4.843 4.688 3.960 2.980 0.580 1.507 -- -- 
Tung 5.391 9.805 0.707 5.377 1.072 -- -- 61.18 

6 Mw/Mn Polynomial 2.37 3.48 3.55 3.38 3.95 5.36 f 7.44 3.90 

aNumber-average molecular weight 
bViscosity-average molecular weight under theta conditions 
CWeight-average molecular weight 
dZ-average molecular weight 
e(Z+l  )-average molecular weight 
fValue estimated by Wesslau model 
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ingly, Table 2 indicates that the values of Mn, Mv and Mw 
can be estimated reasonably well by the polynomial 
method (equation (11)). The theoretical curve drawn in 
Figure 5 is considered to be acceptable in view of the 
complicated feature of the distribution as well as the small 
SE=0.0119 (Table 1) obtained. 

The Wesslau distribution function which best accounts 
for the g.p.c, data of sample E2 (Figure 4), furnishes 
comparable values of My, Mw and Mz+l as quoted in 
Table 2. 

The overall performance of the four simple models is 
also demonstrated by the SE data (Table 1) and average 
molecular weights (Table 2). As far as the curve-fitting of 
I(M) data is concerned, the Schulz function is definitely 
superior to the other three for addition polymers with 
moderate polydispersity while the Wesslau function ap- 
pears to be the most suitable one for polymers with broad 
molecular weight distribution, particularly polyolefins. 
When the data on average molecular weights are exam- 
ined, it is evident that the Schulz and Wesslau distri- 
butions re_produce the observed low-order molecular 
weights Mn, My a n d  )~w, and high-order molecular 
weights Mw, Mz and Mz + 1 reasonably well, respectively. 
In any event, the Flory and Tung distributions do not 
afford satisfactory predictions in the present investi- 
gations. These findings have some practical implications 
as explained below. 

First of all, we will establish a distribution model which 
fits the g.p.c, data best by referring to the smallest value of 
SE. In this connection, it is not unreasonable to assume 
that the polynomial model is the choice as has been 
demonstrated in the majority of the cases. Under this 
specific condition, equation (16) is employed to deal with 
the experimental data. Now if the difference between the 
estimated and observed average molecular weights is 
within the experimental error which usually is not exceed- 
ing i0~o at low molecular weights, then equation (15) will 
ultimately lead to the true values of various average 
molecular weights. This operation has an advantage in 
that it does not involve the approximate derivative W(M), 
which is estimated either numerically (see equation (53)) 
or graphically. Unfortunately, both alogarithms are te- 
dious and would inherently introduce considerable error 
in the final values of the average molecular weights. Thus, 
we have proposed a relatively simple approach to assess 
the average molecular weights accurately. Applications of 
this method to various commercial thermoplastics and a 
biomodal polymer have proved to be fruitful. 

Incidentally, the values of absolute _Mn determined by 
osmometry, have been reported to be 0.193 × 105 and 
1.10 × 105 for samples M1 and M2 respectively 23. These 
figures are substantially higher than those deduced from 
the g.p.c, measurements (Table 2), reflecting partially the 
approximate nature of the algorithm involved in estimat- 
ing the derivative W(M), particularly in the low molecular 
weight region as also witnessed in Figure 7 for sample $2. 
It has been commented that the overestimate from the 
osmometric data may be due to the experimental con- 
ditions that allow the low molecular weight fractions to 
pass through undesirably the membrane 27. 

Table 2 also reports the values of the polydispersity 
indexA. Recently, we have investigated the polydispersity 
effects on a particular property of polymer solutions 2 s. 
The present work justifies the use of Schulz distribution 
function for our purposes in those particular studies. 

An immense amount of work has been done on the 
mathematical prediction of the molecular weight distri- 
bution in terms of the various kinetic parameters 7'29'3°. 
However, to evaluate the relevant absolute rate constants 
from a set of a known molecular weight distribution data 
is a formidable task 31. Preliminary investigations indicate 
that the present technique may be used to determine 
transfer constants via the coefficient 0 o, which is inversely 
proportional to -/~n, as stated. Nevertheless, the re- 
lationships between the rate constants and the poynomial 
parameters N~ and 00 are too complicated to be dealt with 
even for a simple system such as the bulk polymerization 
of styrene initiated by 2,2'-azobisisobutyronitrile under 
controlled conditions. Furthermore, these rate constants 
are hardly mathematically separable from one another, 
except the one associated with the initiation step. This 
implies that the rate constant k i, which can be determined 
rapidly from the polymerization kinetic data by a method 
proposed by us recently 32, may also be derived from the 
molecular weight distribution data of the polymer. 
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NOMENCLATURE 

a 

ai 
b 
b' 
bi 

ei 
f(~,b) 
L, 
f,,, 
g(~,b) 
g~, 
gb" 

h(P) 
h'(P) 
i 
J 
kp 
kt 
k~ 
k. 
k~r 

l 
m 

n 

q 
s 

t 

wi(w) 
Y 

order of the moment U. 
empirical constant associated with li(M) 
Schulz parameter 
approximate value of b 
empirical constant associated with Ii(M) 
empirical constant associated with I~(M) 
function defined by equation (19a) 
function defined by equation (23) 
function defined by equation (24) 
function defined by equation (19b) 
function defined by equation (25) 
function defined by equation (26) 
function defined by equation (36a) 
function defined by equation (36b) 
summation index for power of t 
summation index 
rate constant for propagation reaction 
rate constant for combination reaction 
rate constant for disproportionation reaction 
rate constant for transfer reaction to monomer 
rate constant for transfer reaction to chain transfer 
agent 
summation index or power of X 
degree of Taylor series for 0 
degree of various polynomials with argument X or 
Y 
subscript for qth repetition 
summation index 
time 
weight fraction (normalized) of MI(M) or XI(X) 
variable defined by equation (1 la) 
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A l 

D 
E 
Fl(t) 
F' 
G(t) 
G' 
Hz(t) 
I' 
I(M) 
li(M) 

I(X) 
I(y) 
K 
Lt 
L, 
M 
Mi 
m o 

m o  
m n 

M'. 
My 

~ w  

M" 

Mz+l 
[M] 
Nt 
N'(X) 
N "  

P 
p, 

[P,] 
Rl 
S' 
SE 
[s] 
U. 
W(M) 

variable defined by equation (lb) 
difference parameter 
function defined by equation (7a) 
complex function of t and other variables 
function defined by equation (21a) 
function defined by equation (5a) 
function defined by equation (22a) 
function defined by equation (5b) 
initiation rate 
integral distribution function of M 
empirical integral distribution function over a 
limited range of M around Mi 
integral distribution function of X 
integral distribution function of y 
constant defined by equation (10a) 
function defined by equation (7a) 
function defined by equation (7c) 
molecular weight of polymer 
molecular weight of i th polymer species 
Wesslau parameter 
molecular weight of a repeating unit 
number-average molecular weight 
apparent number-average molecular weight 
viscosity-average molecular weight under theta 
conditions 
weight-average molecular weight 
apparent weight-average molecular weight 
z-average molecular weight 
(z + 1) average molecular weight 
instantaneous monomer concentration 
variable defined by equation (1 lb) 
number distribution function of X 
total number of g.p.c, data points 
integer indicating N th interation 
Flory parameter 
approximate value of P 
concentration of X-mer 
function defined by equations (8a) and (8b) 
function defined by equation (29) 
standard error of estimate 
instantaneous chain transfer agent concentration 
a th moment of distribution 
differential distribution function of M 

W(X) differential distribution function of X 
WdM ) empirical differential distribution function over a 

limited range of M around M~ 
X number of repeating units of X-mer 
X_i number of repeating units in Mi 
X. hypothetical number-average degree of polymeri- 

zation at t = 0 
Y Tung parameter 
Z Tung parameter 

Schulz parameter 

ct' approximate value of c~ 
fl Wesslau parameter 
0 X-independent parameter defined by equation 

(lb) 
0 o constant equal to 0 at t = 0 
0 i i th coefficient of Taylor series for 0 
#(x) digamma function of x 
~b X-independent parameter defined by equation (la) 
~k X-independent parameter defined by equation (lc) 
F(x) gamma function of x 
A polydispersity index 
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